Stress-oriented hydrogen-induced cracking (SOHIC) in H2S environments

G.N. Haidemenopoulosa,b,*, H. Kamoutsisb, K. Polychronopouloua, P. Papageorgioub, I. Altanisc, P. Dimitriadisc and M. Stiakakisc

a. Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
b. Department of Mechanical Engineering, University of Thessaly, Volos, Greece
c. Motor Oil Hellas, Korinth Refinery, Greece

*Corresponding author, e-mail: grigorios.chaidemenopoulos@kustar.ac.ae

ABSTRACT

Hydrogen damage in wet H\textsubscript{2}S environments is classified as Blistering, Hydrogen-induced cracking (HIC), Stress-oriented hydrogen-induced cracking (SOHIC) or Sulfide stress cracking (SSC) in API 571 recommended practice \cite{1} while the assessment of hydrogen damage is performed in accordance with API 579 \cite{2}. While hydrogen blistering and HIC is a frequent problem when steel operates in wet H\textsubscript{2}S service, SOHIC is a rather rare phenomenon and when occurring is mostly associated with residual stresses at welds. SOHIC in pipelines and pressure vessels has been thoroughly reviewed by Pargeter \cite{3} and actually most of the case studies reported, associated with SOHIC, are related with SOHIC at welds and concern mostly pipelines. In the present work we report on a SOHIC cracking of a pressure vessel for hydrocarbon/amine processing. The vessel was originally constructed of a HIC-resistant steel. The investigation methodology included metallography, scanning electron microscopy, tensile testing and impact testing.

Figure 1: Characteristic crack path during SOHIC
Stress-oriented hydrogen-induced cracking (SOHIC) in H2S environments
G.N. Haidemenopoulos et al.

The results indicated that SOHIC proceeds in two steps: (a) initiation of small HIC cracks lying in the rolling plane and stacked in a direction normal to the applied stress, (b) through thickness linking of HIC cracks (see Figure 1). The propagation of the HIC cracks as well as the through-thickness link cracks is associated to cleavage fracture mechanisms.

The key factors identified in this failure were: (a) short periods of high hydrogen charging conditions as manifested by high H2S/MDEA ratios and (b) stress triaxiality imposed by the relatively large thickness of the plate. The results indicated that a HIC-resistant steel might not be immune from SOHIC. Under high hydrogen charging conditions HIC cracks can initiate at interfaces other than stringer-type inclusions, such as ferrite/pearlite interfaces in the microstructure of the steel.

References